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Abstract. This paper addresses the two-dimensional biharmonic problem for a semi-infinite strip with Dirichlet
boundary conditions. The method of superposition is used to solve the problem. The object of this paper is to
clarify mathematical questions connected with the solution of a special integral equation and to provide a rigorous
justification of the applicability of the method of superposition. Mellin’s transform technique of investigating the
asymptotic behaviour of unknown density when the argument tends to infinity is used.
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1. Introduction

The problem of solving the biharmonic equation in a semi-infinite strip arises both in elasticity
studies and in studies of slow viscous flow. In the present paper we consider the Dirichlet
problem for the homogeneous biharmonic equation in the half-strip S = {(x, y) : x > 0, |y| <

1}:
�2u(x, y) = 0, (x, y) ∈ S

u(x,±1) = uy(x,±1) = 0, x > 0,

u(0, y) = f (y), ux(0, y) = g(y), |y| < 1, u(∞, y) = 0.

(1)

The main result of the present paper consist, in the algorithm for the construction of the
solution of that boundary-value problem. Our problem is closely related to a number of stud-
ies in elasticity involving semi-infinite strips, e.g. [1–11], using eigenfunction expansions.
In order to solve the boundary-value problem (1) we use the superposition method. This
method for solving the three-dimensional problem of the equilibrium of an elastic rectangular
parallelepiped was proposed by Lamé [12].

The main idea of the superposition method for the biharmonic equation in a rectangular
two-dimensional domain is that of using the sum of two Fourier representations involving
trigonometric functions in x- and y-coordinates (see [13-15] for detailed reviews of such
studies). As regards the superposition method for the biharmonic equation in the halfstrip,
the solution u(x, y) is represented by the sum of a Fourier series in the y-coordinate and
a Fourier integral in the x-coordinate (for details see [11, 16–19]). This sum and integral
satisfy identically the governing biharmonic equation and together have sufficient functional
arbitrariness for fulfilling the boundary conditions at the edges. The determination of the series
coefficients and the densities of the integrals, representing the solution of the boundary-value
problem, is reduced to the solution of a system of integral-algebraic equations. In this paper
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we prove that this system possesses a unique solution and the asymptotic properties of the
solution are investigated. As a result, the smoothness properties of the boundary data are
given under which it is possible to construct the solution of the boundary-value problem by
the method of superposition. In this respect the Dirichlet problem is considered under the
weakest assumptions.

Section 2 formulates the representation of the solution and shows that this depends ulti-
mately on an integral equation. It is shown that this equation has a unique solution. Section 3
studies properties of the solution form: it is proved therein that it, indeed, satisfies rigorously
the biharmonic equation, and that it, indeed, satisfies the boundary conditions at the lateral
edges of the strip and at infinity. The principal result of Section 4 concerns the satisfaction of
the non-zero boundary conditions at the edge x = 0.

To simplify the formulae we consider the symmetric case, i.e.,

f (y) = f (−y), g(y) = g(−y), |y| < 1.

In the remainder of this paper we assume the complex-valued functions f and g to satisfy
the conditions

f ∈ W 1
p, g ∈ Lp = Lp[−1, 1], p ∈ (1,∞), f (1) = 0, (2)

where Wk
p = Wk

p[−1, 1], k = 1, 2, . . . , is the Sobolev space with norm

‖f ‖Wk
p

=
{

k∑
m=0

∫ 1

−1
|f (m)(y)|pdy

}1/p

.

We assume the following condition to be fulfilled∫ 1

−1
g(y)dy = 0, (3)

which does not reduce the generality of the problem (see Remarks 5). Using p ∈ (1,∞) we
have

p′ = p(p − 1)−1, p0 = min{p, 2},
Nk

p(f, g) = ‖f ‖Wk
p

+ ‖g‖Wk−1
p

, k = 1, 2, . . . .

To construct the solution of boundary-value problem (1) by the method of superposition,
we use the following Fourier-series expansion for even functions f and g:

f (y) = f0 +
∞∑

n=1

fn cos(αny), g(y) =
∞∑

n=1

gn cos(αny), αn = πn, n = 1, 2, . . .

Due to conditions (2) and the Hausdorff-Young inequality [20, Section 13.5] we have

{αnfn}∞
n=1 = {

f (1)
n

}∞
n=1 ∈ lp′

0
:

∞∑
n=1

|f (1)
n |p′

0 < ∞, (5)

where f (1)
n stand for the Fourier coefficients of the odd function f ′(y) ∈ Lp = Lp(−1, 1]

expanded in the orthonormal system {sin(αny)}∞
n=1.
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2. The method of superposition

According to the general scheme of the method of superposition, omitting the intermediary
formulae analogous to [18, Chapter 8], we look for a solution of the boundary-value problem
(1) in the form

u = u1 + u2, (6)

u1(x, y) = 1

2π

∫ ∞

0

U(s, y)X(s)

s3 sinh2 s
cos(xs)ds, (7)

u2(x, y) =
∞∑

n=1

{(
(−1)n+1Xn

2α3
n

+ fn

)
(1 + αnx) + gnx

}
e−αnx cos(αny), (8)

where

U(s, y) = (s cosh s + sinh s) cosh sy − sy sinh s sinh sy (9)

and the unknowns X(s) and Xn. If, for example, the conditions∫ ∞

0
s−4|X(s)|ds < ∞,

∞∑
n=1

α−3
n |Xn| < ∞, (10)

are satisfied, then the (even with respect to y) function u(x, y) is indefinitely differentiable
and satisfies in S the homogeneous biharmonic equation and the condition u → 0, x → ∞,
∀y ∈ [−1, 1], and (formally) boundary conditions from (1) for the normal derivative.

The boundary conditions for the values of u at the boundary of the half-strip S lead, due to

α

π

∫ ∞

−∞
eisxds

s2 + α2
= e−αx, α > 0, x > 0, (11)

U(s, y)

sinh2 s
= 2

s
+ 4s3

∞∑
n=1

(−1)n cos(αny)

(s2 + α2
n)

2
, |y| ≤ 1, (12)

to the system of linear integral-algebraic equations

X(s) = −4s3 sinh2 s

�(s)

∞∑
n=1

Xn

(s2 + α2
n)

2
= F(s), s > 0, (13)

Xn = 4α3
n

π

∫ ∞

0

X(s)ds

(s2 + α2
n)

2
, n = 1, 2, . . . , (14)

1

π

∫ ∞

0
s−4X(s)ds = f0, (15)

where

�(s) = sinh s cosh s + s, (16)
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F(s) = sinh2 s

�(s)
F1(s), F1(s) = 4s3T0(s),

T0(s) = −
∞∑

n=1

(−1)n 2α3
nfn + (α2

n − s2)gn

(s2 + α2
n)

2
.

(17)

Evidently, system (13), (14) can be reduced to the following integral equation for the
unknown function X(s):

X(s) −
∫ ∞

0
Q(s, t)X(t)dt = F(s), s > 0, (18)

and the kernel

Q(s, t) = 16s3 sinh2 s

π�(s)

∞∑
n=1

α3
n

(s2 + α2
n)

2(t2 + α2
n)

2
.

Concerning conditions (10), (15), it will be shown below (see Lemma 1) that they are fulfilled
automatically, if X(s) is the solution of Equation (18) which belongs to the Hilbert space
Hσ = L2(R+; t2σ−1), σ ∈ (−2,−1, 1/p0) with norm

‖X‖Hσ
= ‖X(s)sσ−1/‖L2(R+) =

{∫ ∞

0
|X(s)|2s2sσ−1ds

}1/2

. (19)

Let λk, k = 1, 2, . . . , be the roots of the function �(λ) lying in the half-plane Imλ > 0.
According to [21], the following relation is valid

λk = (−1)kπ k + i

2
log k + O(1), k → ∞. (20)

Due to (20) there exists a number ε0 > 0, such that the function sinh2 λ/�(λ) is analytic and
bounded in the sector

�ε0 = {λ ∈ C : |Im λ| < ε0Re λ},
and there exists δ > 0 such that

|1 − sinh2 λ/�(λ)| ≤ ce−δ|λ|, λ ∈ �ε0 . (21)

We shall often use the following relations [22, pp. 298, 687]:∫ ∞

0

sγ+2ds

(s2 + 1)2
= π(γ + 1)

4 cos(πγ /2)
, Re γ ∈ (−3, 1), (22)

∞∑
n=1

1

(λ2 + α2
n)

2
= 1

2λ3

(
sinh λ cosh λ + λ

2 sinh2 λ
− 1

λ

)
. (23)

Lemma 1. Let X(s) ∈ Hσ , where σ ∈ (−2,−1 − 1/p0), be the solution of the integral
equation (18) with the right-hand side from (17). Then X(s) admits meromorphic continuation
onto the entire complex plane with the poles at ±λk. Moreover, conditions (10), (15) are valid
as well as the estimate

|X(λ)| ≤ c
{‖X‖Hσ

+ N1
p(f, g)

} · |λ|4(1 + |λ|)−4−σ , λ ∈ �ε0, (24)
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with the constant c > 0, independent of X(s), f (y) and g(y).
Proof. Applying the Cauchy-Bounjakowsky inequality to the sequence Xn, defined via

X(s) by Equations (14), we obtain the following estimate

|Xn| ≤ c‖X(s)‖Hσ
· n|σ |, n = 1, 2, . . . . (25)

Then (17) and (18) imply that X(s) admits the meromorphic continuation onto the complex
plane according to

X(λ) = 4λ3 sinh2 λ

�(λ)
T (λ), T (λ) =

∞∑
n=1

Xn

(λ2 + α2
n)

2
+ T0(λ), (26)

where the function T0(λ) is given by (17). It follows from (26) that the poles of X(λ) are ±λk.
Then from (5) and (17) we obtain for each ε > 0:

|T0(λ)| ≤ cεN
1
p(f, g)(1 + |λ|)−2+1/p0, λ ∈ �ε. (27)

On the other hand, from (25–27), we obtain (24). Condition (10) is a consequence of the
estimates (24), (25).

To prove (15) let us divide the integral equation (18) by the function 2π3 sinh2 s/�(s) and
integrate the resulting equation with respect to s ∈ (0,∞). Then, using the definition of the
function F1(s) (see (17)) and Equations (22), (23), we obtain

1

π

∫ ∞

0
s−4X(s)ds = −

∞∑
n=1

(−1)nfn = f0.

The Lemma is thus proved.
Thus, the construction of the solution of the boundary-value problem (1) by the method of

superposition requires one to investigate the properties of the integral equation (18) with the
right-hand side from (17). Let us notice that the kernel of Equation (18) is nonnegative and
satisfies the regularity condition (see 22), (23))

1 −
∫ ∞

0
Q(s, t)dt = 2 sinh2 s

s�(s)
> 0, s ≥ 0.

The kernel Q(s, t) can be presented in the form

Q(s, t) = Q0(s, t) +
(

sinh2 s

�(s)
− 1

)
Q0(s, t),

where the main part

Q0(s, t) = 16s3

π

∞∑
n=1

α3
n

(s2 + α2
n)

2(t2 + α2
n)

2
= 1

t

∞∑
n=1

1

n
φ1

( s

n

)
φ2

(n

t

)
, (28)

and the functions

φ1(λ) = 4πλ3

(λ2 + π2)2
, φ2(λ) = 4πλ3

(π2λ2 + 1)2
, Re λ > 0.

On the other hand, due to (22), we have for the function

D(γ ) = 1 −
(∫ ∞

0
φ1(s)s

γ−1ds

)
·
(∫ ∞

0
φ2(s)s

γ−1ds

)
, Re γ ∈ (−3, 1),
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the following equation

D(γ ) = D0(γ )

cos2 πγ/2
, D0(γ ) = cos2 πγ/2 − (γ + 1)2. (29)

In what follows it is important that, according to [23], there exists a σ0 ∈ (1, 2) such that

D(γ ) 	= 0, γ 	= 0, Re γ ∈ (−2, σ0). (30)

Also, if γk, k = 1, 2, . . . are are the roots of the functions D(γ ) in the half-plane Reγ > 0,
then Re γk → +∞, k → ∞.

Since D(1 + is) is a real function of the variable s ∈ R, it follows from (30) that the index

κσ = − 1

2π

∫ σ+i∞

σ−i∞
D′(γ )

D(γ )
dγ = 0, ∀σ ∈ (−2, 0).

Thus, according to [24], we obtain the following statement.
Theorem 1. For each σ ∈ (−2, 0) Equation (18) has a unique solution X ∈ Hσ for any

F ∈ Hσ .
Corollary 1. Let σ ∈ (−2,−1 − 1/p0). Then for any f, g, Equation (18), with the right-

hand side as in (17), possesses a unique solution X(s) ∈ Hσ .
Remark 1. If Xj(s) ∈ Hσ , j = 1, 2 are the solutions of Equation (18) with the same

right-hand part (17) and σj ∈ (−2,−1−1/p0), then it follows from Theorem 1 and from (24)
that X1(s) = X2(s).

3. Properties of the solution of the integral equation

In what follows by the solution of Equation (18) we understand a function X(s) ∈ Hσ , for
some fixed σ ∈ (−2,−1 − 1/p0), which is the solution of integral equation (18) with the
right-hand part (17) (see Corollary 1).

According to [24], in order to investigate the properties of the solution X(s) one should
consider the analytic properties of the Mellin transform of the function F(s) defined by (16),
(17). The existence of the Mellin transform

G1(γ ) =
∫ ∞

0
F1(s)s

γ−1d, Re γ ∈ (−3,−1 − 1/p0),

follows from estimate 27). In what follows we need the following Proposition (see also [25,
Section 1.11]).

Proposition 1. For each y ∈ (−1, 1) the functions

S(γ, y) =
∞∑

n=1

(−1)nαγ
n sin(αny), C(γ, y) =

∞∑
n=1

(−1)nαγ
n cos(αny),

with Re γ < −1 admit analytic continuation onto the whole complex γ -plane and for an
µ ≥ 0 and δ > 0 the following estimates are valid:

|S(γ, y)| + |C(γ, y)| ≤ cµ,δ · eδ|Imγ |(1 − |y|)−(1+µ), Re γ ≤ µ.

Moreover, for Re γ > −1, |y| < 1, the following are true:
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S(γ, y) = −�(γ + 1) cos(πγ /2) · (1 + y)γ+1 − (1 − y)γ+1

π(1 − y2)γ+1
+ S1(γ, y),

C(γ, y) − C(γ, 0) = −�(γ + 1) sin(πγ /2) · (1 + γ )γ+1 + (1 − y)γ+1

π(1 − y2)γ+1
+ C1(γ, y), (31)

where for any µ > 0 and δ > 0:

|S1(γ, y)| + |C1(γ, y)| ≤ cµ,δ · eδ|Imγ |, Re γ ∈ (−1 + 1/µ,µ).

The above proposition is used to the establishment of the following Lemma.
Lemma 2. The function G1(γ ) is analytic in the half-strip Re γ ∈ (−3,−1 − 1/p) and

|G1(γ )| ≤ ce−(π/2−δ)|Imγ |, Re γ ∈ [σ1, σ1] (32)

for any δ ∈ (0, π/2) and [σ1, σ1] ⊂ (−3,−1 − 1/p). For Re γ > −2 the representation

G1(γ ) = 2�(γ + 2)

{
(γ + 1) tan

πγ

2

∫ 1

−1
f ′(y)

(1 + y)γ+1 − (1 − y)γ+1

π(1 − y2)γ+1
dy

+(γ + 2)

∫ 1

−1
g(y)

(1 + y)γ+1 + (1 − y)γ+1

π(1 − y2)γ+1
dy

}
+ G2(γ ),

(33)

is true, where G2(γ ) is a function meromorphic in the half-plane Re γ > −2 having simple
poles at γ = 2k − 1, k = 1, 2, . . . which satisfies estimates (32) outside the circles |γ − 2k +
1/ ≤ 1.

Proof. Taking into account (5) and (22), we obtain for Re γ ∈ (−3, 2):

G1(γ ) = 2π

cos πγ

2

{
(γ + 1)

∫ 1

−1
f ′(y)S(γ + 1, y)dy − (γ + 2)

∫ 1

−1
g(y)C(γ + 1, y)dy

}
.

(34)

The Hölder inequality

‖l(y)(1 − |y|)−µ‖L1 ≤ cµ‖l(y)‖Lp
, ∀µ < 1/p′.

and Condition (3) garantee that the function G1(γ ) has no pole at γ = −1. Hence, using
Proposition 1, we conclude that the function G1(γ ) is analytic in the strip Re(−3,−1 − 1/p)

and satisfies estimates (32) with the constant c dependent on N1
p(f, g). Now relation (33)

follows from (34), (31) and (3). The Lemma is thus proved.
From (32) and [26] we obtain for p > 2 the following specification of estimate (27) applied

to the function F1(λ):

|F1(λ)| ≤ cε,δN
1
p(f, g)|λ|3(1 + |λ|)−2+1/p+δ, λ ∈ �ε, ∀δ > 0. (35)

Theorem 2. The Mellin transform

M(γ ) = M([X](γ ) =
∫ ∞

0
X(s)sγ−1ds

of the solution of Equation (18) is analytic in the strip Re γ ∈ (−4,−1 − 1/p) and for any
µ > 0 the following estimate is true:

|M(γ )| ≤ cµN1
p(f, g)e−δ1|Imγ |, ,Re γ ∈ (−4 + µ,−1 − 1/p − µ), (36)
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with a constant δ1 > 0. For Re γ > σ1 the following relation is valid

M(γ ) = M0(γ ) + M1(γ ), (37)

where

M0(γ ) = 2�(γ + 2) cos πγ

2

D0(γ )

{
(γ + 1) sin

πγ

2

∫ 1

−1
f (y)

(1 + y)γ+1 − (1 − y)γ+1

π(1 − y2)γ+1
dy

+(γ + 2) cos
πγ

2

∫ 1

−1
g(y)

(1 + yγ+1 + (1 − y)γ+1

π(1 − y2)γ+1
dy

}
+ G2(y),

and M1(γ ) is a function meromorphic in the half-plane Re γ > σ1 having poles at the roots
γ0 = 0, γk, k = 1, 2, . . . of the function D0(γ ) located in Re γ ≥ 0, which admits the
estimate

|M1(γ )| ≤ cµN1
p(f, g)e−δ1|Imγ |, Re γ ∈ (σ1 + 1/µ,µ).

Proof. Using [26, Section 1.29], we obtain from Lemma 1 and Corollary 1 the statement
about analyticity M(γ ) in the strip Re γ ∈ (−4,−1 − 1/p0), together with estimates (36).
Then from (16)–(18) we obtain that the function X(s) satisfies the equation (see (28)):

X(s) −
∫ ∞

0
Q0(s, t)X(t)dt = F1(s) + F2(s), s > 0

with

F2(s) =
(

1 − sinh2 s

�(s)

)
·
(∫ ∞

0
Q0(s, t)X(t)dt − F1(s)

)
.

From (21), (21), (24) and [26] we conclude that the Mellin transform M[F2](γ ) is an analytic
function in Re γ > −3 satisfying the estimates

|M[F2](γ )| ≤ cµN1
p(f, g)e−δ1|Imγ |, Re γ ∈ (−2, µ), ∀µ > 0.

Using [24], Lemma 2 and formulae (29), (30) we obtain for M(γ ) the representation

M(γ )
D0(γ )

cos2 πγ/2
= πγ (γ + 1)

2π i cos πγ/2

∫ σ1+i∞

σ1−i∞
π−ξ (ξ + 1)

cos πξ/2
ζ(ξ − γ + 1)M(ξ)dξ+

+G1(γ ) + M[F2](γ ),

where Re γ ∈ (σ1,−1 − 1/p) and ζ(z) is the Riemann ζ -function. Analysing the last expres-
sion together with (33), we complete the proof.

Corollary 2. For the Solution X(s) of Equation (18) and for the corresponding sequence
Xn the representations

X(s) = 1

2π i

∫ σ+i∞

σ−i∞
M(γ )s−γ dγ, s > 0, σ ∈ (−4,−1 − 1/p),

Xn = 1

2π i

∫ σ+i∞

σ−i∞
M(γ )

(γ + 1)

cos πγ

2

α−γ
n dγ, n = 1, 2, . . . , σ ∈ (−3,−1 − 1/p). (38)

are valid, having the asymptotics
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X(s) = O(sσ ), s → ∞, Xn = O(nσ ), n → ∞, ∀σ > 1 + 1/p. (39)

Let X(s) be the solution of Equation (18) and let Xn be the corresponding sequence from
(14). Then, in particular, the conditions (10) are fulfilled and, therefore the function u from
(6–8) is indefinitely differentiable for (x, y) ∈ S and satisfies there the biharmonic equation.
Let us prove that u also satisfies the boundary conditions from (1) at the lateral boundaries of
the half-strip and at infinity.

Using the equation

U(λ, y) = λ cosh λ(1 − |y|) + λ(1 − |y|) sinh λ sinh λ|y| + sinh λ cosh λy,

we obtain the estimates∣∣∣∣ dn

dλn
U(λ, y)

∣∣∣∣ ≤ cn(1 + |λ|)n(1 + |λ|(1 − |y|)e|Reλ|(1−|y|), |y| ≤ 1. (40)

Due to (27) and (24) we obtain from (26) the relation

T (λ) = o(|λ|−1), λ → ∞, λ ∈ �ε0 . (41)

Then using (26), (40), (41) and Jordan’s lemma, we obtain for the function u1 from (7) the
representation

u1(x, y) = 1

π

{∫ iδ

iδ−e−iθ∞
+

∫ iδ+e−iθ∞

iδ

}
T (λ)U(λ, y)

�(y)
eiλxdλ, (42)

for x > 0, |y| < 1 and some δ ∈ (0, min(α1,Im λk)), θ n(0, π/2) In turn, it follows from
(42), (6)–(8) that the function u(x, y) is indefinitely differentiable for x > 0, |y| ≤ 1 and due
to Corollary 1 and (24) it fulfills the estimate

|u(x, y)| ≤ cN1
p(f, g)e−δx, x ≥ 1, |y| ≤ 1. (43)

Then from (42), the equality U(λ, 1) = �(λ), U ′
u(λ, 1) = 0, λ ∈ C and (11), we obtain

u(x,±1) = u′
y(x,±1) = 0, x > 0,

i.e., the boundary conditions from (1) at surfaces y = ±1 are satisfied.
It should be noticed that estimate (43) really continues to be valid on replacing the constant

δ ∈ (0, min(α1,Im λk)) by the exact constant δ = min(Im λk) (see [11]).

4. Satisfaction of the non-zero boundary conditions

Let us consider the validity of the boundary conditions (1) on the edge x = 0 of the half-
strip. Relations (37)–(39) play an important role in obtaining the following main result of this
subsection.

Theorem 3. The following is true for the function u(x, y) from (6)–(8):

‖u(x, y) − f (y)‖W 1
p

+ ‖ux(x, y) − g(y)‖Lp
→ 0, x → 0. (44)

To prove (44) let us make the same preliminary constructions as connected with the trans-
formation of expressions (6)–(8). Consider the function
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v(x, y) = −f0 + 1

2π

∫ ∞

0
X(s)

U(x, y)

s3 sinh2 s
cos(xs)ds−

−1

2

∞∑
n=1

(−1)n

α3
n

Xn(+αnx)e−αnx cos(αnx), x > 0, |y| < 1.

(45)

Using (6)–(8) we obtain

u(x, y) = v(x, y) + f0 +
∞∑

n=1

{fn(1 + αnx) + gnx}eαnx cos(αny). (46)

For x > 0, |y| < 1 we have the integral representation

C(γ ; x, y) ≡
∞∑

n=1

(−1)nαγ
n e−αnx = 1

π

∫ ∞

0

sγ cosh sy

sinh s
sin(xs − πγ/2)ds, (47)

with Re γ > 0. Denote by

R(γ, t) = γ t sin t + (γ + 1) tan πγ/2(t cos t − sin t).

Lemma 3. For σ ∈ (−2. − 1 − 1/p) the function v(x, y) can be presented in the form:

v(x, y) = 1

4π2i

∫ σ+i∞

σ−i∞
M(γ )

{∫ ∞

0

s−γ−3 cosh sy

sinh s
R(γ, xs)ds

}
dγ. (48)

Proof. To simplify the formulae we give the proof for the case of f0 = 0. Then (15) implies
M(−3) = 0 and the sequence Xn satisfies relation (38) for all σ ∈ (−4,−1 − 1/p). In this
case substituting (38) with some σ ∈ (−4,−3) in (45) and using the Fubini theorem, we
obtain for x > 0, |y| < 1:

v(x, y) = 1

4π2i

∫ σ+i∞

σ−i∞
M(γ )

{∫ ∞

0
s−γ−3 U(x, y)

sinh2 s
cos(xs)ds−

− π(γ + 1)

cos πγ/2
(C(−γ − 3; x, y) + xC(−γ − 2; x, y))

}
dγ.

(49)

Then, on integrating by parts, we get∫ ∞

0
s−(γ+3) U(s, y)

sinh2 s
cos(xs)ds = −

∫ ∞

0
s−(γ+2) cosh sy

sinh s
(xs sin(xs) + (γ + 1) cos(xs))ds.

Using the last expression and expression (47), we obtain from (49) that (48) is valid for σ ∈
(−4,−3). Since the function M(γ )R(γ, t) is analytic in the strip Reγ ∈ (−4,−1,−1/p) and
R(γ, t) has a second-order zero at t = 0, the Cauchy theorem (with account of Theorem 2)
implies (48) for all σ ∈ (−2,−1,−1/p). The Lemma is proved.

Using the relation

1

sinh s
= 2e−s + e−2s

sinh s
,

and [22] we obtain for Reγ ∈ (−2,−1), y ∈ (0, 1):∫ ∞

0

s−γ−3 cosh sy

sinh s
R(γ, xs)ds = γ �(−γ − 1)r

γ+2
1 (x, y)P0(γ ; x(1 − y)−1) + P1(γ ; x, y),

(50)
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where

r1(x, y) = (x2 + (1 − y)2)1/2,

P0(γ ; t) = − t√
1 + t2

sin((γ + 1) arctan t)+

+γ −1(γ + 1) tan πγ/2

{
t cos((γ + 1) arctan t)√

1 + t2
− sin((γ + 2) arctan t)

γ + 2

}
, t > 0,

and P1(γ ; x, y) is an infinitely differentiable with respect to x ≥ 0, y ∈ [0, 1] function
satisfying the estimates

‖P1(γ ; x, y)‖Ck [0,1] + ‖∂/∂xP1(γ ; x, y)‖Ck [0,1] ≤ ck,µx|γ |,
Reγ ∈ [−2,−1 − µ), ∀µ > 0.

Lemma 4. The following relation is true

‖v(x, y)‖W 1
p

+ ‖vx(x, y)‖Lp
→ 0, x → 0. (51)

Proof. The function v(x, y) is even with respect to y and, therefore, due to (48), (50), (37)
it is sufficient to prove (51) for the functions

vj (x, y) =
∫ σ+i∞

σ−i∞
Mj(γ )γ �(−γ − 1)r

γ+2
1 (x, y)P0(γ ; x(1 − y)−1)dγ, σ ∈ (−2,−1 − 1/p).

Using the properties of the functions M0(γ ) and M1(γ ) (see Theorem 2) and the expressions

P0(−1; t) = 0, P0(0; t) = t2

1 + t2
, lim

γ→1
(γ − 1)P0(γ, t) = − 4

π

(
t√

1 + t2

)3

,

we obtain

v0(x, y) = −π

∫ σ−i∞

σ−i∞
γ

D0(γ )

{
(γ + 1)

∫ 1

−1
f ′(t)

(1 + t)γ+2 − (1 − t)γ+2

(1 − t2)γ+2
dt+

+(γ + 2) cot πγ/2
∫ 1

−1
g′(t)

(1 + t)γ+2 + (1 − t)γ+2

(1 − t2)γ+2
dt

}
r
γ+2
1 (x, y)P0(γ ; x(1 − y))dγ,

(52)

v1(x, y)=c0x
2+c1x

3+
∫ σ2−i∞

σ2−i∞
M1(γ )γ �(−γ − 1)r

γ+2
1 (x, y)P0(γ ; x(1 − y))dγ, σ2∈(1, σ0)

(see (25)). Then, on using the estimates,∣∣∣∣ ∂k

∂tk
P0(γ ; t)

∣∣∣∣ ≤ c
t2−k

(1 + t2)2+k
(1 + |γ |2)eπ/2|Imγ |, Reγ ≤ 2, |γ − 1| ≥ 1, k = 0, 1, (53)

and the estimates for M1(γ ) from Theorem 2 and the estimate for the gamma function [25]

|�(−γ − 1)| ≤ ce−π/2|Imγ |, Re γ = σ2,

we obtain from (52)
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‖v1(x, y)‖C3[0,1] + ‖∂/∂xv1(x, y)‖C2[0,1] → 0, x → 0,

which, in particular, is the statement (51) for the function v1(x, y).
Then, using (52) and (53), we may easily show that statement (51) for the function v0(x, y)

is equivalent to

2∑
j=0

‖Kj(x)l‖Lp [0,1] → 0, x → 0, ∀ l(y) ∈ Lp[0, 1], (54)

where the integral operators

(Kj(x)l)(y) =
∫ 1

0
Kj(x; y, t)l(t)dt

have the kernels

K0(x; y, t) =
∫ σ+i∞

σ−i∞
K(γ )(x2 + y2)γ/2+1P0(γ ; xy−1)t−γ−2dγ, (55)

K1(x; y, t) = ∂

∂y
K0(x; y, t), K2(x; y, t) = ∂

∂x
K0(x; y, t),

and K(γ ) is analytic in the strip Reγ ∈ (−2,−1), satisfying the estimates

|K(γ )| ≤ cµ|γ |2e−π |Imγ |, Reγ ∈ (−2 + µ,−1 − µ), ∀ µ > 0.

If the function l(y) ∈ C1
0 [0, 1], then integrating by parts by t in the expressions for

(Kj(x)l)(y) and taking into account (53), (55), we obtain for x ∈ (0, 1], σ ∈ (−1−1/p,−1):

2∑
j=0

‖Kj(x)l‖Lp [0,1] ≤ c‖l′(t)‖Lp[0,1] · x

(∫ 1

0
(x + y)σpdy

)1/p

≤ cxσ+1+1/p → 0,

with x → 0. The set C1
0 [0, 1] is dense in the space Lp[0, 1]. Therefore, due to the Banach-

Steinhaus theorem, to complete the proof of the lemma, it remains to prove uniformity with
respect to x ∈ (0, 1] and boundedness in Lp[0, 1] of the set of integral operators Kj(x),
j = 0, 1, 2. Using (53), (55) we obtain the following estimates for x ∈ (0, 1], 0 < y, t < 1
for the kernels

2∑
j=0

|Kj(x; y, t)| ≤ cσ

yσ+1

tσ+2
, σ ∈ (−2,−1). (56)

Then choosing for 0 < t < y in (56) the value of the parameter σ from the interval (−2,−1−
1/p), and for 0 < y < t the value of σ from (−1 − 1/p,−1), we obtain due to [27] the
following statement

2∑
j=0

‖Kj(x)‖Lp [0,1] ≤ c, x ∈ (0, 1].

The lemma is proved.
Proof of Theorem 3. Due to (46), Lemma 4 and (5), to prove the theorem it is sufficient to

deduce the relations
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‖f0 +
∞∑

n=1

fne
−αn cos(αny) − f (y)‖W 1

p
+ ‖

∞∑
n=1

gne
−αn cos(αny) − g(y)‖Lp

→ 0,

x‖
∞∑

n=1

f (1)
n αj

ne
−αneiαny‖Lp

+ x‖
∞∑

n=1

gnα
j
ne

−αneiαny‖Lp
→ 0,

with x → 0 and j = 0, 1. These relations follow from (2)–(3), from the properties of the
Poisson kernel

Pr(e
it ) = 1 − r2

1 − 2r cos t + r2
, r ∈ [0, 1), |t| < π

and from the boundedness of the Hilbert transform in Lp, 1 < p < ∞ [27]. The Theorem is
proved.

Analysing the proof of Lemma 4, we should make the following remark. If we use local
polar coordinates

x = r1 sin θ, y = 1 − r1 sin θ, r1 ∈ (0, 1), θ ∈ (0, π/2),

in the neighbourhood of the corner point x = 0, y = 1 of the half-strip, we have

P0(γ ; x(1 − y)) = ψ(γ, θ)

= − sin θ sin(γ + 1)θ + γ + 1

γ
tan

πγ

2

[
sin θ cos(γ + 1)θ − sin(γ + 2)θ

γ + 2

]
.

(57)

It follows from (48), (50), (52) and Theorem 2 that in the neighbourhood of the point x = 0,
y = 1 the function v(x, y) admits the representation

v(x, y) =
n−1∑
k=1

bkr
γk+2
1 ψ(γk, θ) + v0(x, y) + w(x, y) + O(r

ReγN+2
1 ), (58)

with r1 → 0, (r1, θ) ∈ V , where V = {r1 ∈ (0, 1), θ ∈ (0, π/2)}, w ∈ C∞(V ) and v0 ∈
C∞(V ) is the function defined in the proof of Lemma 4. The function r

γk+2
1 ψ(γk, θ), where γk

are the roots of D0(γ ) with Re γk > 0, is the solution of the homogeneous Dirichlet problem
in the wedge r1 > 0, θ ∈ (0, π/2). Hence, by (46), (52), (58), the full description of the local
behaviour of the solution of the boundary-value problem (1) is given in the neighbourhood of
the corner x = 0, y = 1.

5. Remarks

It should be noted that condition (3) does not restrict the generality of the analysis, because
it can be removed with the help of the partial solution of the biharmonic equation of the
form u0(x, y) = U(λk, y)eiλkx , which satisfies homogeneous Dirichlet conditions at the sides
y = ±1 of the half-strip. Generalizing the above methods, we obtain the following theorem.

Theorem 4. Let even functions f, g satisfy the conditions

f ∈ Wk
p, g ∈ Wk−1

p , 1 < p < ∞,

for some k = 1, 2, 3 and let
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f (1) = 0, k = 1; f (1) = f ′(1) = g(1) = 0, k = 2;
f (1) = f ′(1) = g(1) = g′(1) = 0, k = 3.

Then there exists an infinitely differentiable solution u of boundary-value problem (1) for
x < 0, |y| ≤ 1, estimated by (43) and satisfying the relation

‖u(x, y) − f (y)‖Wk
p

+ ‖ux(x, y) − g(y)‖Wk−1
p

→ 0, x → 0.

This solution is unique and there exists a constant c > 0, independent of f and g, such that
the estimate

‖u(x, y)‖Wk
p

+ ‖ux(x, y)‖Wk−1
p

≤ cNk
p(f, g), ∀ x > 0 (59)

is valid. If g satisfies condition (3), then the solution u is given by (6)–(8), where the function
X(s) and the sequence Xn are defined according to Corollary 1 and (14).

We notice that we used the method of [28] to prove uniqueness as well as the estimate (59),
which was originally established for the solutions of the form (6)–(8).

The case should be noticed where the solution of the integral equation (18) can be given in
explicit form. Namely, let the real function F(s) be continuous for s ≥ 0 and let it admit the
estimate

|F(s)| ≤ cs−1, s ≥ 1. (60)

Then, from the regularity properties of the kernel Q(s, t), using the general results of L.V. Kan-
torovich on the solvability of functional equations in semi-ordered spaces [29] applied to
Equation (18) in the real K-space L∞(R+), we obtain that Equation (18) possesses a contin-
uous solution X(s) bounded for s ≥ 0 represented by the Neumann series

X(s) = F(s) +
∞∑

n=1

∫ ∞

0
Qn(s, t)F (t)dt, s ≥ 0 (61)

where (Qn(s, t) is the n-th iteration of the kernel Q(s, t)), which is convergent in the space
C[0, d] for any finite d > 0. In the case where the function F(s) is of the form (16) and (60)
is valid, this solution is unique due to Corollary 1.

It is possible to show that, if the functions f and g satisfy the conditions of Theorem 4
with k = 1 and f (3)(1) = 0, then the function F(s) of the form (16), satisfies condition (60).
Condition (60) is satisfied also if f, g satisfy the conditions of Theorem 4 with k = 1 under
the additional conditions f (y) = g(y) = 0, |y| ∈ (y0, 1] for some y0 ∈ (0, 1). In both cases
we obtain from (38) the following specification of the asymptotic formulae (39), namely, for
any σ < σ0 ∈ (1, 2):

X(s) = a + O(s−σ ), s → ∞, Xn = a + O(n−σ ), n → ∞, (62)

where a is a constant, and the value of σ0 is defined by (30). Statement (62) makes it possible
to use the method of improved reduction to solve numerically the system (13), (14), (see [18],
[30, Chapter 1]).

We notice that in the same way, using the method of superposition, it is possible to inves-
tigate the antisymmetric boundary-value problem (1), i.e., problem (1) with the odd functions
f , g. In this case we look for a solution u of the form
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u(x, y) = 1

2π

∫ ∞

0
X(s)

(cosh s sinh sy − y sinh s cosh sy)

s2 sinh2 s
sin(sx)ds+

+
∞∑

n=1

{
(−1)nXn

2α2
n

x(1 + αn + x)fn + gx
n

}
e−αnx sin(αny),

where

f (y) =
∞∑

n=1

fn sin(αny), g(y) =
∞∑

n=1

gn sin(αny).

At the same time the function X(s) must satisfy integral equation (18) with the kernel

Q(s, t) = 16s3 sinh2 s

π(sinh s cosh s − s)

∞∑
n=1

α3
n

(s2 + α2
n)

2(t2 + α2
n)

2

and the right-hand side

F(s) = 4s3 sinh2 s

(sinh s cosh s − s)

∞∑
n=1

(−1)nαn{(3α2
n + s2)fn + 2αngn}

(s2 + α2
n)

2
.

Expressions (14) for the sequence Xn remain true. The nonnegative kernel Q(s, t) satisfies
the regularity condition

1 −
∫ ∞

0
Q(s, t)dt = 2(sinh2 −s2)

s(sinh s cosh s − s)
> 0, s ≥ 0,

and its main part is of the form (28).

6. Conclusion

In this paper we have given a mathematical justification for the applicability of the method
of the superposition to the Dirichlet problem for the biharmonic equation in the semi-infinite
strip. The proposed way of consideration of the integral equation of the method of super-
position can be extended to non-smooth boundary functions at the short end. This might be
useful for application in various problems of the theory of elasticity, bending of thin plates
and Stokes flow.
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